Apparent Molar Volumes of Strontium Chloride in Ethanol + Water at 298.15 K

M. Pilar Peña, Ernesto Vercher, and Antoni Martínez-Andreu*

Departamento de Ingeniería Química, Facultad de Química, Universitat de València, 46100 Burjassot, Valencia, Spain

Abstract

Densities of ethanol + water + strontium chloride mixtures have been measured with an oscillatingtube densimeter over a large range of concentrations of the salt and ethanol, at 298.15 K . From these densities, apparent molar volumes of the electrolyte in these mixtures have been calculated, and partial molar volumes at infinite dilution have been evaluated.

Introduction

Density data on electrolyte solutions furnish some interesting information in elucidating the structural interactions occurring in solution. Most density measurements have been made on aqueous as well as nonaqueous electrolyte solutions. Comparatively, less attention has been devoted to densities of ternary mixtures (water + nonaqueous solvent + electrolyte), possibly due to the large quantity of experimental work necessary.

The effect of a salt dissolved in a mixed solvent has potential application in the recovery of organic liquids from aqueous solutions by distillation. The study of density data for a mixed solvent containing electrolytes provides some preliminary information concerning the salt effect on vapor-liquid equilibria.

In a previous work (Peña et al., 1995a), we studied the vapor-liquid equilibrium of the ethanol + water + strontium chloride system. In the present work, we have determined the densities of this system at 298.15 K and have obtained the apparent mol ar vol umes of the strontium chloride in ethanol + water mixtures.

Millero (1972) reported partial molar volumes at infinite dilution for the strontium chloride in water from Shedlovsky and Brown (1934), Kruis (1936), Redlich (1940), Wirth (1940), Fajans and J ohnson (1942), and Ellis (1967). Furthermore, Herz (1914) published experimental density data of the water + strontium chloride binary system. Bateman (1949) gave apparent molar volume data for the strontium chloride in ethanol + water. The strontium chloride is not soluble in absolute ethanol.

Experimental Section

The chemicals were absolute ethanol (Baker analyzed reagent, >99.5 mass \%), distilled water, and strontium chloride (Probus, > 99.5 mass \%). They were used without further purification. The density of ethanol was (785.08 ± 0.01) $\mathrm{kg} \cdot \mathrm{m}^{-3}$ at 298.15 K , indicating a maximum of 0.01 vol \% of water, as reported by Marsh and Richards (1980). The density of pure water at 298.15 K was taken as 997.05 $\mathrm{kg} \cdot \mathrm{m}^{-3}$ (Marsh and Richards, 1980).
The water + strontium chloride samples were analyzed gravimetrically, by evaporation to dryness. The accuracy of salt mole fractions in the samples was better than 0.000 01. The ethanol + water + strontium chloride mixtures were prepared one by one gravimetrically using a Sartorius analytical balance with a precision of ± 0.0001

[^0]Table 1. Densities d, Molar Volumes V, and Molar Concentrations c of Water (2) + Strontium Chloride (3) Mixtures and Apparent Molar Volumes \mathbf{V}_{ϕ} of Strontium Chloride in Water at 298.15 K

X_{3}	$\mathrm{~d} /{\mathrm{kg} \cdot \mathrm{m}^{-3}}^{\mathrm{V} / \mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}}$	$\mathrm{c} / \mathrm{mol} \cdot \mathrm{L}^{-1}$	$\mathrm{~V}_{\phi} / \mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$	
0.00179	1010.77	18.073	0.0989	20.2 ± 0.8
0.00484	1033.76	18.086	0.2678	21.6 ± 0.3
0.00821	1058.79	18.105	0.4536	22.54 ± 0.17
0.01386	1099.64	18.154	0.7633	24.23 ± 0.10
0.01866	1133.87	18.202	1.0254	25.20 ± 0.08
0.02209	1157.84	18.241	1.2109	25.84 ± 0.06
0.02650	1188.37	18.293	1.4484	26.53 ± 0.05
0.03019	1213.35	18.344	1.6458	27.20 ± 0.04
0.03435	1241.22	18.404	1.8667	27.82 ± 0.04
0.03906	1272.49	18.471	2.1147	28.37 ± 0.03
0.04506	1311.07	18.571	2.4265	29.21 ± 0.03
0.05472	1372.26	18.732	2.9214	30.19 ± 0.02
0.06137	1413.31	18.849	3.2561	30.78 ± 0.02

g. They were stirred for sufficient time to assure dissolution of the salt and stored in vials prior to use. Samples were kept in a water bath at 303 K to prevent the formation of bubbles in the densimeter. The accuracy of ethanol and water mole fractions was better than 0.00005 , and the accuracy of salt mole fraction was better than 0.000004.

The mole fraction solubility of strontium chloride in water at 298.15 K is 0.0596 (Menzies, 1936) and decreases almost linearly when the mole fraction of ethanol in the mixed solvent increases, to become practically zero when the mole fraction of alcohol in the ethanol + water mixed solvent is 0.80 . Therefore, no samples were prepared with a mole fraction of alcohol in the ethanol + water mixed solvent greater than 0.80 .

The sample densities were measured with an Anton Paar DMA 55 densimeter matched to a J ulabo circulator with proportional temperature control and an automatic drift correction system that kept the samples at (298.15 ± 0.01) K. The densimeter was calibrated with distilled water and dry air. The accuracy of density values was $\pm 0.01 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.

Results and Discussion

In Table 1 the densities, d, of the water (2) + strontium chloride (3) mixtures are reported, where x_{3} is the mole fraction of strontium chloride in the binary mixture. In Table 2 the density, d, of the ethanol (1) + water (2) + strontium chloride (3) system is reported, where x_{i} is the mole fraction of component i in the ternary mixture and x_{1}^{\prime} is the mole fraction of ethanol in the salt-free solvent. From these results, the molar volume of solution, V , and the molar concentration of salt in the solution, c , were

Table 2. Densities d, Molar Volumes V, and Molar Concentrations c of Ethanol (1) + Water (2) + Strontium Chloride (3) Mixtures and Apparent Molar Volumes \mathbf{V}_{ϕ} of Strontium Chloride in Ethanol + Water Mixtures at 298.15 K

X_{1}	X_{2}	X_{3}	x_{1}	$\mathrm{d} / \mathrm{kg} \cdot \mathrm{m}^{-3}$	$\mathrm{V} / \mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$	$\mathrm{c} / \mathrm{mol} \cdot \mathrm{L}^{-1}$	$\mathrm{V}_{\phi} / \mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$
0.02003	0.97478	0.005195	0.02013	1026.04	18.818	0.2761	21.7 ± 0.3
0.04129	0.95362	0.005091	0.04150	1016.21	19.572	0.2601	21.6 ± 0.3
0.08956	0.90530	0.005139	0.09002	999.17	21.268	0.2416	21.1 ± 0.3
0.14282	0.85197	0.005214	0.14356	980.99	23.196	0.2248	23.2 ± 0.3
0.20609	0.78867	0.005243	0.20718	958.74	25.590	0.2049	26.5 ± 0.3
0.28002	0.71490	0.005083	0.28145	933.38	28.483	0.1784	27.6 ± 0.3
0.36600	0.62885	0.005151	0.36790	909.09	31.908	0.1614	24.0 ± 0.4
0.47605	0.51877	0.005180	0.47853	882.42	36.376	0.1424	24.2 ± 0.5
0.60045	0.39441	0.005142	0.60355	857.28	41.508	0.1239	24.6 ± 0.6
0.77837	0.21656	0.005066	0.78233	828.12	48.984	0.1034	14.9 ± 0.9
0.02020	0.96983	0.009971	0.02040	1059.99	18.853	0.5289	22.84 ± 0.15
0.04118	0.94885	0.009976	0.04159	1049.70	19.599	0.5090	22.94 ± 0.15
0.08810	0.90181	0.010093	0.08900	1030.77	21.252	0.4749	23.11 ± 0.15
0.14278	0.84723	0.009989	0.14422	1007.51	23.251	0.4296	26.22 ± 0.16
0.20327	0.78672	0.010010	0.20533	983.54	25.546	0.3919	28.62 ± 0.16
0.27837	0.71159	0.010043	0.28119	956.27	28.482	0.3526	28.92 ± 0.17
0.36588	0.62411	0.010010	0.36958	928.56	31.971	0.3131	27.39 ± 0.19
0.46452	0.52567	0.009808	0.46912	901.20	35.981	0.2726	28.47 ± 0.23
0.60219	0.38779	0.010029	0.60829	872.43	41.630	0.2409	25.5 ± 0.3
0.75903	0.23124	0.009730	0.76649	844.22	48.183	0.2019	18.1 ± 0.4
0.01972	0.96485	0.015430	0.02002	1097.94	18.887	0.8169	24.53 ± 0.10
0.04143	0.94313	0.015443	0.04208	1086.53	19.648	0.7860	23.84 ± 0.10
0.08811	0.89641	0.015475	0.08950	1063.75	21.304	0.7264	24.72 ± 0.10
0.14185	0.84267	0.015489	0.14408	1038.13	23.284	0.6652	27.65 ± 0.10
0.20473	0.77987	0.015400	0.20793	1009.12	25.689	0.5995	30.45 ± 0.10
0.36529	0.61925	0.015459	0.37103	949.74	32.047	0.4824	30.19 ± 0.12
0.47249	0.51193	0.015572	0.47997	919.34	36.395	0.4279	29.89 ± 0.15
0.60338	0.38120	0.015427	0.61283	888.72	41.758	0.3694	27.41 ± 0.19
0.01943	0.96052	0.020048	0.01983	1130.02	18.918	1.0597	25.10 ± 0.08
0.04058	0.93945	0.019966	0.04141	1116.73	19.665	1.0153	24.86 ± 0.08
0.08671	0.89333	0.019960	0.08848	1091.08	21.312	0.9366	26.11 ± 0.08
0.14213	0.83793	0.019943	0.14502	1062.14	23.354	0.8539	28.48 ± 0.08
0.20180	0.77823	0.019976	0.20591	1033.04	25.637	0.7792	30.54 ± 0.08
0.27544	0.70459	0.019967	0.28106	1000.38	28.538	0.6997	31.77 ± 0.08
0.36208	0.61793	0.019988	0.36946	969.01	31.973	0.6252	30.04 ± 0.09
0.46736	0.51266	0.019978	0.47689	935.57	36.272	0.5508	31.34 ± 0.11
0.01976	0.95439	0.025855	0.02028	1168.76	18.997	1.3610	26.12 ± 0.06
0.04076	0.93342	0.025827	0.04184	1154.38	19.741	1.3083	26.04 ± 0.06
0.08720	0.88694	0.025853	0.08952	1126.23	21.394	1.2084	26.79 ± 0.06
0.14076	0.83340	0.025848	0.14449	1094.87	23.379	1.1056	28.97 ± 0.06
0.20244	0.77175	0.025810	0.20781	1059.84	25.779	1.0012	32.18 ± 0.06
0.27533	0.69884	0.025821	0.28263	1025.52	28.638	0.9017	32.52 ± 0.06
0.36314	0.61095	0.025915	0.37280	990.75	32.142	0.8063	31.95 ± 0.07
0.01974	0.95028	0.029979	0.02035	1197.58	19.024	1.5759	25.91 ± 0.05
0.04061	0.92939	0.030000	0.04187	1181.15	19.786	1.5162	26.62 ± 0.05
0.08646	0.88355	0.029991	0.08913	1150.60	21.428	1.3996	27.60 ± 0.05
0.13928	0.83072	0.030007	0.14358	1116.31	23.416	1.2815	30.49 ± 0.05
0.20051	0.76953	0.029957	0.20670	1080.41	25.778	1.1621	32.59 ± 0.05
0.27286	0.69721	0.029932	0.28128	1043.71	28.626	1.0456	33.30 ± 0.05
0.35860	0.61139	0.030006	0.36969	1007.71	32.045	0.9364	32.80 ± 0.06
0.04095	0.92281	0.036238	0.04249	1219.17	19.896	1.8214	27.85 ± 0.04
0.08671	0.87720	0.036085	0.08996	1184.92	21.537	1.6755	28.74 ± 0.04
0.13973	0.82403	0.036239	0.14498	1149.38	23.515	1.5411	30.60 ± 0.04
0.20158	0.76217	0.036242	0.20916	1110.08	25.911	1.3987	32.55 ± 0.04
0.27340	0.69041	0.036195	0.28366	1071.40	28.721	1.2602	32.59 ± 0.04
0.01914	0.94092	0.039942	0.01993	1260.11	19.177	2.0828	28.35 ± 0.04
0.04015	0.91999	0.039862	0.04181	1242.01	19.922	2.0009	28.33 ± 0.04
0.08553	0.87445	0.040024	0.08909	1207.79	21.559	1.8565	29.31 ± 0.04
0.13772	0.82219	0.040096	0.14347	1169.14	23.533	1.7038	31.67 ± 0.04
0.19816	0.76180	0.040044	0.20642	1128.26	25.882	1.5472	33.68 ± 0.04
0.01925	0.93404	0.046706	0.02019	1303.35	19.272	2.4235	28.81 ± 0.03
0.04015	0.91313	0.046724	0.04212	1285.38	20.000	2.3362	28.49 ± 0.03
0.08624	0.86710	0.046662	0.09046	1244.52	21.689	2.1515	29.94 ± 0.03
0.09087	0.86289	0.046244	0.09527	1236.85	21.881	2.1135	30.65 ± 0.03
0.01916	0.93084	0.050007	0.02017	1324.88	19.307	2.5900	28.87 ± 0.03
0.04031	0.90949	0.050200	0.04244	1303.91	20.094	2.4983	29.53 ± 0.03
0.08405	0.86608	0.049863	0.08846	1263.47	21.671	2.3010	30.37 ± 0.03
0.01909	0.92369	0.057216	0.02025	1365.89	19.468	2.9390	30.36 ± 0.03

The apparent molar volume, V_{ϕ}, of strontium chloride in the ethanol + water mixture is defined from the molar volume of solution, V , as we deduced in a previous work (Peña et al., 1995b), by means of the expression
where V_{1} is the molar volume of pure ethanol, V_{2} is that of pure water, and $\mathrm{V}_{12}^{\mathrm{E}}$ is the excess molar volume of the binary ethanol + water mixture, which depends on the solvent composition.

The apparent molar volume of strontium chloride in a ternary liquid mixture of ethanol + water + strontium chloride can be calculated, for each composition, by using eq 1 , once the density of the sample, the molar volumes of pure ethanol and pure water, and the dependence on composition of the excess molar volume of the binary ethanol + water mixture, at the same pressure and temperature conditions, are known.

The value of $\mathrm{V}_{12}^{\mathrm{E}}$, for each composition of the solvent mixture, was calculated by using a correlation (Peña et al., 1995b) obtained from experimental data published by Marsh and Richards (1980).

The values of the apparent molar volume of strontium chloride calculated at 298.15 K are also shown in Tables 1 and 2. These values aresignificantly lower than the values reported by Bateman (1949).

Millero (1971) and Nomura et al. (1985) suggested that the apparent molar volume of an electrolyte in a mixed solvent, at constant solvent composition, can be fitted by the Masson equation (1929):

$$
\begin{equation*}
\mathrm{V}_{\phi}=\mathrm{V}_{\phi}^{\infty}+\mathrm{S}_{\mathrm{v}}^{\mathrm{e}} \mathrm{c}^{1 / 2} \tag{2}
\end{equation*}
$$

where $\mathrm{V}_{\phi}^{\infty}$ is the apparent molar volume of strontium chloride at infinite dilution, which is the same as the partial molar volume of strontium chloride at infinite dilution, and S_{v}^{e} is the experimental slope. Both V_{ϕ}^{∞} and $\mathrm{S}_{\mathrm{v}}^{\mathrm{e}}$ depend on the solvent composition and can be correlated using the following expressions:

$$
\begin{gather*}
\mathrm{V}_{\phi}^{\infty} / \mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}=\sum_{v=0}^{4} \mathrm{~b}_{\nu}\left(\mathrm{x}_{1}^{\prime}\right)^{v} \tag{3}\\
\mathrm{~S}_{v}^{\mathrm{e}} / \mathrm{cm}^{3} \cdot \mathrm{~mol}^{-3 / 2} \cdot \mathrm{~L}^{1 / 2}=\sum_{v=0}^{4} \mathrm{c}_{\nu}\left(\mathrm{x}_{1}^{\prime}\right)^{v} \tag{4}
\end{gather*}
$$

From the V_{ϕ} values of strontium chloride in water, given in Table 1, we have found that $\mathrm{V}_{\phi}^{\infty}=17.8 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$. This value is in good agreement with the $17.94 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ value recommended by Millero (1972). The $\mathrm{V}_{\phi}^{\infty}$ values obtained from density data reported by Herz (1914) and Bateman (1949) are respectively $20.7 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ and $29.2 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$. These values are out of the range suggested by Millero (1972).

From the V_{ϕ} values and at a least-squares minimization, we have found the values of b_{v} and c_{v} that minimize the sum of the squares of deviations between experimental and calculated results of V_{ϕ} in the range $0.02 \leq x_{1}^{\prime} \leq 0.8$. These parameters are given in Table 3. The mean absolute deviation of the apparent molar volume for the strontium chloride is $0.63 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$, and the standard deviation is $0.82 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$.

From the values of b_{v} and c_{v} and eqs 1-4, we have recalculated the molar volume and the density of the

Table 3. Parameters of Eqs 3 and 4

	$v=0$	$v=1$	$v=2$	$v=3$	$v=4$
$\mathrm{~b}_{v}$	14.968	80.478	-376.42	736.7	-516.3
C_{v}	8.827	-52.706	473.61	-1096.2	777.7

ethanol + water + strontium chloride solutions. The mean absolute deviation of molar volume is $0.011 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$, and the corresponding standard deviation is $0.015 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$. The mean absolute deviation of the density is $0.52 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$, and the standard deviation is $0.67 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$. However, the apparent molar volumes of strontium chloride in pure water recalculated from eqs 1-4 with the parameters of Table 3 do not agree well with the values obtained from the experimental binary data.

Literature Cited

Bateman, R. L. The Apparent Molal Volume of Strontium Chloride in Ethanol-Water Mixtures. J. Am. Chem. Soc. 1949, 71, 2291-2293.
Ellis, A. J. Partial Molal Volumes of $\mathrm{MgCl}_{2}, \mathrm{CaCl}_{2}, \mathrm{SrCl}_{2}$ and BaCl_{2} in Aqueous Solutions to $200^{\circ} \mathrm{C}$. J. Chem. Soc. A 1967, 4, 660-664.
Fajans, K.; Johnson, O. Apparent Volumes of Individual Ions in Aqueous Solution. J. Am. Chem. Soc. 1942, 64, 668-678.
Herz, W. The internal friction of salt solutions. Z. Anorg. Chem. 1914, 89, 393-396.
Kruis, A. Dependence on Concentration of Apparent Molar Volumes of Single Strong Electrolytes. Z. Phys. Chem. 1936, B34, 1-12.
Marsh, K. N.; Richards, A. E. Excess Volumes for Ethanol + Water Mixtures at 10-K Intervals from 278.15 to 338.15 K. Aust. J. Chem. 1980, 33, 2121-2132.
Masson, D. O. Solute Molecular Volumes in Relation to Solvation and I onization. Philos. Mag. 1929, 8, 218-235.
Menzies, A. W. C. A Method for the Determination of the Solubility. Solubilities of the $\mathrm{SrCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ System at $20-200^{\circ} \mathrm{C}$. J. Am. Chem. Soc. 1936, 58, 934-937.
Millero, F. J. The Molal Volumes of Electrolytes. Chem. Rev. 1971, 71, 147-176.
Millero, F. J. The Partial Molal Volumes of Electrolytes in Aqueous Solutions. In Water and Aqueous Solutions; Horne, R. A., Ed.; Wiley-Interscience: New York, 1972.
Nomura, H.; Kawaizumi, F.; Miyahara, Y. Partial Molar Volumes of CaCl_{2} in Water-Methanol mixtures and the Applicability of the Debye-Hückel Theory. Chem. Eng. Commun. 1985, 34, 305-314.
Peña, M. P.; Vercher, E.; Martinez-Andreu, A. I sobaric Vapor-Liquid Equilibrium for Ethanol + Water + Strontium Chloride. J. Chem. Eng. Data 1995a, 40, 311-314.
Peña, M. P.; Vercher, E.; Martinez-Andreu, A. Partial M olar Volumes of Strontium Bromide in Ethanol + Water Mixtures at 298.15 K. J. Chem. Eng. Data 1995b, 40, 662-664.
Redlich, O. Molal Volumes of Solutes IV. J . Phys. Chem. 1940, 44, 619629.

Shedlovsky, T.; Brown, A. S. The Electrolytic Conductivity of Alkaline Earth Chlorides in Water at $25^{\circ} \mathrm{C}$. J. Am. Chem. Soc. 1934, 56, 1066-1071.
Wirth, H. E. Density of Sea Water. J . Marine Res. 1940, 3, 230-247.

Received for review July 31, 1996. Accepted October 28, 1996.* Financial support by Generalitat Valenciana (Grant GV-1006/93) is gratefully acknowledged.
J E960260P
${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, December 1, 1996.

[^0]: * To whom correspondence should be addressed. E-mail: Antoni.Martinez@uv.es.

